Sunday, 14 January 2018

चलती - औसत विकास दर - stata


मेरे पास लोगों, पंजीकरण समय और स्कोर की एक सूची है स्ताट में मैं प्रत्येक अवलोकन के समय एक समय खिड़की के आधार पर स्कोर की चलती औसत की गणना करना चाहता हूं (कोई अवलोकन की संख्या के आधार पर खिड़की नहीं)। उदाहरण के लिए, समझे कि - किसी भी तरफ 2 दिन और वर्तमान अवलोकन सहित नहीं, मैं इस तरह से कुछ गणना करने की कोशिश कर रहा हूं: Ive ने डाटासेट को tsset के साथ परिभाषित करने का प्रयास किया और फिर tssmooth का उपयोग करें। लेकिन इसे काम करने के लिए नहीं मिल सके चूंकि एक निश्चित अवधि के लिए कई अवलोकन हो सकते हैं, इसलिए मुझे यकीन नहीं है कि यह सही दृष्टिकोण भी है। इसके अलावा, वास्तव में दिन चर एक टीसी टाइमस्टैम्प है 6 दिसंबर को 16:04 बजे 16:04 पूछा tsset खिचड़ी भाषा यहाँ यहां तक ​​कि यहां तक ​​कि अगर आपने अपने समय को नियमित रूप से स्थान दिया है, तब भी मदद की, क्योंकि आपके पास समय के लिए कुछ दोहराए गए मान हैं, फिर भी आपका डेटा स्टैट्स अर्थ में पैनल डेटा के रूप में योग्य नहीं है। लेकिन समस्या को संभावनाओं पर एक पाश के लिए उपज देना चाहिए सबसे पहले, अपना उदाहरण ले लीजिए शाब्दिक रूप से पूर्णांक दिनों का उपयोग करें। यहां हम कोई लापता मूल्य नहीं मानते हैं। आगे बढ़ने के सिद्धांत दूसरों की औसत (सभी का योग - यह मान) (मूल्यों की संख्या - 1) व्यवहार में, आप मिलीसेकंड में सभी संभव तिथि-समयों पर लूप नहीं चाहते हैं। इसलिए, इस फ़ॉर्म के अवलोकनों पर एक लूप का प्रयास करें नोट एलटीपीएसयूडोकोडगेट तत्व यह पत्र भी प्रासंगिक है: यदि संभव हो, तो एक पंक्ति को और अधिक जटिल होना जरूरी है: जिसका अर्थ है कि वर्तमान मूल्य अनुपलब्ध है, तो हम योग से 0 और घटाव के 0 से घटाते हैं। संपादित करें: मिलीसेकंड में 2 दिनों के लिए, इनबिल्ट फ़ंक्शन का फायदा उठाने और cofd (2) का उपयोग करें। औसत और घातीय चौरसाई वाले मॉडलों को बढ़ाना मतलब मॉडल, यादृच्छिक चलने के मॉडल और रैखिक प्रवृत्ति मॉडल, गैर-मौसमी पैटर्न और प्रवृत्तियों से आगे बढ़ने में पहला कदम है चलती औसत या चौरसाई मॉडल का उपयोग करके एक्सट्रपलेशन। औसत और चौरसाई मॉडल के पीछे मूल धारणा यह है कि समय श्रृंखला स्थानीय स्तर पर स्थिरता से भिन्न होती है इसलिए, हम मतलब के वर्तमान मूल्य का अनुमान लगाने के लिए चलती (स्थानीय) औसत लेते हैं और फिर इसका इस्तेमाल निकट भविष्य के पूर्वानुमान के रूप में करते हैं। यह औसत मॉडल और यादृच्छिक-चलना-बिना-बहाव-मॉडल के बीच समझौता के रूप में माना जा सकता है। एक समान रणनीति का इस्तेमाल स्थानीय प्रवृत्ति का अनुमान और एक्सट्रपलेशन करने के लिए किया जा सकता है। चलती औसत को अक्सर मूल श्रृंखला का एक क्वाटस्मोउथेडक्वाट संस्करण कहा जाता है क्योंकि अल्पकालिक औसतन को मूल श्रृंखला में बाधाओं को चौरसाई करने का असर होता है। चौरसाई (चलती औसत की चौड़ाई) की डिग्री को समायोजित करके, हम उम्मीद कर सकते हैं कि मध्य और यादृच्छिक चलने वाले मॉडल के प्रदर्शन के बीच किसी भी प्रकार के इष्टतम संतुलन को रोकें। सरल औसत मॉडल का मॉडल है सरल (समान रूप से भारित) मूविंग औसत: समय के समय में वाई के मूल्य के लिए पूर्वानुमान, टी के समय की तुलना में सबसे हाल के एम अवलोकन के औसत औसत के बराबर है: (यहाँ और कहीं और मैं बस 8220Y-hat8221 के प्रतीक का इस्तेमाल करेगा किसी दिए गए मॉडल की शुरुआती संभव पूर्व तारीख में किए गए समय श्रृंखला वाई के पूर्वानुमान के लिए)। यह औसत अवधि टी-(एम 1) 2 पर केंद्रित है, जिसका अर्थ है कि स्थानीय मतलब का अनुमान सही के पीछे की ओर जाता है के बारे में (एम 1) 2 अवधि से स्थानीय मतलब का मूल्य। इस प्रकार, हम कहते हैं कि सरल चलती औसत में डेटा की औसत आयु (एम 1) 2 अवधि के सापेक्ष, जिसके लिए पूर्वानुमान की गणना की जाती है: यह उस समय की मात्रा है, जिसके द्वारा पूर्वानुमान में आंकड़ों को बदलना । उदाहरण के लिए, यदि आप पिछले 5 मानों की औसतता रखते हैं, तो अंक बदलकर उत्तर देने में लगभग 3 अवधियों का अनुमान लगाया जाएगा। ध्यान दें कि यदि एम 1, सरल चलती औसत (एसएमए) मॉडल यादृच्छिक चलने मॉडल (विकास के बिना) के बराबर है। यदि मीटर बहुत बड़ी है (अनुमान अवधि की अवधि के बराबर), एसएमए मॉडल औसत मॉडल के बराबर है। किसी पूर्वानुमान के मॉडल के किसी भी पैरामीटर के साथ, डेटा के सर्वोत्तम उद्धरण प्राप्त करने के लिए, कश्मीर के मूल्य को समायोजित करने के लिए प्रथागत है, यानी औसत पर सबसे छोटी पूर्वानुमान त्रुटियां। यहां एक ऐसी श्रृंखला का उदाहरण दिया गया है जो धीरे धीरे भिन्न मतलब के आसपास यादृच्छिक उतार-चढ़ाव प्रदर्शित करता है। सबसे पहले, इसे एक यादृच्छिक चलने वाला मॉडल के साथ फिट करने की कोशिश करें, जो कि 1 अवधि के साधारण चलती औसत के बराबर है: यादृच्छिक चलने वाला मॉडल श्रृंखला में परिवर्तनों को बहुत जल्दी प्रतिक्रिया देता है, लेकिन ऐसा करने में यह बहुत अधिक ध्यान देने योग्य है डेटा (यादृच्छिक उतार-चढ़ाव) और साथ ही quotsignalquot (स्थानीय मतलब)। यदि हम इसके बजाय 5 शब्दों की एक सरल चलती औसत कोशिश करते हैं, तो हमें एक चिकनी दिखने वाला पूर्वानुमान प्राप्त होता है: 5-अवधि की सरल चलती औसत उपज इस मामले में यादृच्छिक चलने के मॉडल की तुलना में काफी छोटी त्रुटियां होती है। इस पूर्वानुमान में आंकड़ों की औसत उम्र 3 ((51) 2 है), ताकि यह लगभग तीन अवधियों के मुकाबले मोड़ के पीछे पीछे हो सके। (उदाहरण के लिए, 21 साल की अवधि में गिरावट आई है, लेकिन पूर्वानुमान कई बार बाद में नहीं पड़ते हैं।) ध्यान दें कि एसएमए मॉडल से दीर्घकालिक पूर्वानुमान एक क्षैतिज सीधी रेखा हैं, जैसे यादृच्छिक चलते हैं आदर्श। इस प्रकार, एसएमए मॉडल मानता है कि डेटा में कोई प्रवृत्ति नहीं है। हालांकि, यादृच्छिक चलने वाले मॉडल से पूर्वानुमान केवल पिछले मान के बराबर हैं, जबकि एसएमए मॉडल से पूर्वानुमान हाल के मूल्यों के भारित औसत के बराबर हैं। स्थिर चलती औसत के दीर्घकालिक पूर्वानुमान के लिए सांख्यिकीग्राफिक्स द्वारा निर्धारित आत्मविश्वास सीमा अनुमानित क्षितिज वृद्धि के रूप में अधिक विस्तृत नहीं होती हैं। यह स्पष्ट रूप से सही नहीं है दुर्भाग्य से, कोई अंतर्निहित सांख्यिकीय सिद्धांत नहीं है जो हमें बताता है कि इस मॉडल के लिए आत्मविश्वास के अंतराल को कैसे चौड़ा करना चाहिए। हालांकि, लंबी क्षितिज पूर्वानुमान के लिए आत्मविश्वास सीमा के अनुभवजन्य अनुमानों की गणना करना बहुत कठिन नहीं है। उदाहरण के लिए, आप एक स्प्रैडशीट सेट कर सकते हैं जिसमें एसएमए मॉडल का उपयोग ऐतिहासिक डेटा नमूने के भीतर 2 चरणों के आगे, 3 कदम आगे, आदि के पूर्वानुमान के लिए किया जाएगा। फिर आप प्रत्येक पूर्वानुमान क्षितिज पर त्रुटियों के नमूना मानक विचलन की गणना कर सकते हैं, और फिर उचित मानक विचलन के गुणकों को जोड़कर और घटाकर दीर्घकालिक पूर्वानुमान के लिए आत्मविश्वास अंतराल का निर्माण कर सकते हैं। यदि हम 9-अवधि की सरल चलती औसत की कोशिश करते हैं, तो हमें चिकना पूर्वानुमान और अधिक प्रभाव पड़ता है: औसत आयु अब 5 अवधियों ((91) 2)। अगर हम 1 9-अवधि की चलती औसत लेते हैं, तो औसत आयु 10 तक बढ़ जाती है: ध्यान दें, वास्तव में, अनुमान लगभग 10 अवधियों तक अंक बदल कर पिछड़ रहे हैं। इस श्रृंखला के लिए किस प्रकार का चौरसाई सबसे अच्छा है यह एक ऐसी तालिका है जो उनकी त्रुटि आंकड़े की तुलना करती है, जिसमें 3-टर्म औसत भी शामिल है: मॉडल सी, 5-अवधि की चलती औसत, 3 से कम छोटे मार्जिन द्वारा आरएमएसई के न्यूनतम मूल्य की उपज - एमटीएम और 9-अवधि के औसत, और उनके अन्य आंकड़े लगभग समान हैं इसलिए, बहुत ही इसी तरह के त्रुटि आंकड़ों वाले मॉडलों के बीच, हम यह चुन सकते हैं कि क्या हम भविष्य में कुछ और जवाबदेही या थोड़ा अधिक चिकनाई पसंद करेंगे या नहीं। (पृष्ठ के शीर्ष पर लौटें।) ब्राउन सरल घातीय चिकनाई (तीव्रता से भारित चलती औसत) ऊपर वर्णित साधारण चलती औसत मॉडल में अवांछनीय संपत्ति है जो पिछले कश्वर टिप्पणियों को समान रूप से मानती है और सभी पूर्ववर्ती टिप्पणियों को पूरी तरह से अनदेखी करती है। तीव्रता से, पिछले डेटा को अधिक धीरे-धीरे फैशन में छूट दी जानी चाहिए - उदाहरण के लिए, सबसे हालिया अवलोकन को हाल ही में 2 की तुलना में थोड़ी अधिक वजन मिलना चाहिए और दूसरा सबसे हालिया तीसरे सबसे हालिया से थोड़ा अधिक वजन प्राप्त करना चाहिए और शीघ्र। सरल घातीय चिकनाई (एसईएस) मॉडल यह पूरा करता है 945 को एक क्वोट्समुटिंग निरंतर क्वोट (0 और 1 के बीच की संख्या) को दर्शाएं। इस मॉडल को लिखने का एक तरीका सीरीज एल को परिभाषित करना है जो वर्तमान स्तर (यानी स्थानीय मतलब मान) का प्रतिनिधित्व करता है, जैसा कि आंकड़ों से लेकर वर्तमान तक का अनुमान है। समय पर एल के मूल्य को इस तरह से अपने पिछले मूल्य से पुन: चक्रित किया जाता है: इस प्रकार, वर्तमान मस्तिष्क का मूल्य पिछले समरूप मूल्य और वर्तमान अवलोकन के बीच एक प्रक्षेप होता है, जहां 9 45 सबसे अधिक हाल ही में अंतःसर्वरित मूल्य की निकटता को नियंत्रित करता है अवलोकन। अगली अवधि के लिए पूर्वानुमान केवल मौजूदा मसौदा मूल्य है: समान रूप से, हम अगले पूर्वानुमानों और पिछले टिप्पणियों के संदर्भ में सीधे निम्नलिखित पूर्वानुमान को किसी भी समकक्ष संस्करणों में अभिव्यक्त कर सकते हैं। पहले संस्करण में, पूर्वानुमान पूर्व पूर्वानुमान और पिछले अवलोकन के बीच एक प्रक्षेप होता है: दूसरे संस्करण में, अगले पूर्वानुमान को पिछले त्रुटि की दिशा में एक अलग राशि 945 से समायोजित करके प्राप्त किया जाता है। समय टी तीसरे संस्करण में पूर्वानुमान पूर्वानुमानित रूप से भारित (यानी छूट वाली) छूट औसत 1- 9 45 के साथ चलती औसत है: पूर्वानुमान सूची का प्रक्षेप संस्करण सरल है यदि आप स्प्रेडशीट पर मॉडल को कार्यान्वित कर रहे हैं: यह एक सेल और पिछले पूर्वानुमान, पिछले अवलोकन, और सेल जहां 945 के मूल्य संग्रहीत है की ओर इशारा करते हुए सेल संदर्भ शामिल हैं। ध्यान दें कि 945 1, एसईएस मॉडल एक यादृच्छिक चलने मॉडल (विकास के बिना) के बराबर है। अगर 9 45 0, एसईएस मॉडल औसत मॉडल के समतुल्य है, यह मानते हुए कि पहला मसला मूल्य मतलब के बराबर सेट है। (पृष्ठ के शीर्ष पर लौटें।) साधारण-घातांक-चौरसाई पूर्वानुमान में डेटा की औसत आयु 1 9 45 है, जिसके लिए पूर्वानुमान की गणना की गई है। (यह स्पष्ट नहीं होना चाहिए, लेकिन यह एक अनंत श्रृंखला का मूल्यांकन करके आसानी से दिखाया जा सकता है।) इसलिए, सरल चलती औसत पूर्वानुमान लगभग 1 9 45 की अवधि के मुकाबले अंक पीछे पीछे हो जाता है। उदाहरण के लिए, जब 9 45 0.5 में 2 अवधियां होती हैं, जब 945 0.2 में 5 अवधियां होती हैं, जब 9 45 0.1 में 10 अवधियां होती हैं, और इसी तरह। दी गई औसत आयु के लिए (यानी, अंतराल की मात्रा), सरल घातीय चिकनाई (एसईएस) की पूर्वानुमान सरल चलती औसत (एसएमए) पूर्वानुमान के मुकाबले बेहतर है क्योंकि यह सबसे हाल के अवलोकन पर अपेक्षाकृत अधिक वजन रखता है --i. e। हाल के दिनों में होने वाले परिवर्तनों में यह थोड़ा अधिक उत्तरदायी है। उदाहरण के लिए, 9 शब्दों के साथ एक एसएमए मॉडल और 945 0.2 के साथ एक एसईएस मॉडल दोनों के पास उनके पूर्वानुमान में डेटा के लिए औसत उम्र 5 है, लेकिन एसईएस मॉडल एसएमए मॉडल की तुलना में पिछले 3 मानों पर अधिक वजन रखता है और उसी समय यह doesn8217t पूरी तरह से 8220 भूलने 8221 के बारे में 9 से अधिक समय पुरानी है, जैसा कि इस चार्ट में दिखाया गया है: एसएमए मॉडल पर एसईएस मॉडल का एक अन्य महत्वपूर्ण लाभ यह है कि एसईएस मॉडल एक चिकनाई पैरामीटर का उपयोग करता है जो लगातार चर होता है, इसलिए इसे आसानी से अनुकूलित किया जा सकता है मतलब स्क्वायर त्रुटि को कम करने के लिए एक क्वोटसोलवरकोट एल्गोरिथम का उपयोग करके इस श्रृंखला के लिए एसईएस मॉडल में 945 का इष्टतम मूल्य 0.2961 हो गया है, जैसा कि यहां दिखाया गया है: इस पूर्वानुमान में डेटा की औसत आयु 10.2 9 61 3.4 है, जो कि 6-अवधि की सरल चलती औसत के समान है। एसईएस मॉडल से दीर्घकालिक पूर्वानुमान एक क्षैतिज सीधी रेखा हैं जैसे एसएमए मॉडल और बिना यादृच्छिक चलने के मॉडल विकास के बिना हालांकि, ध्यान दें कि Statgraphics द्वारा गणना किए गए आत्मविश्वास अंतराल अब एक उचित दिखने वाले फैशन में अलग हो जाते हैं, और यह यादृच्छिक चलने मॉडल के लिए आत्मविश्वास के अंतराल से काफी अधिक संकुचित होते हैं। एसईएस मॉडल मानता है कि श्रृंखला यादृच्छिक चलने मॉडल की तुलना में कुछ हद तक अनुमान लगाने योग्य है। एक एसईएस मॉडल वास्तव में एक एआरआईएए मॉडल का विशेष मामला है। इसलिए एआरआईएए मॉडल के सांख्यिकीय सिद्धांत एसईएस मॉडल के लिए आत्मविश्वास अंतराल की गणना के लिए एक ठोस आधार प्रदान करता है। विशेष रूप से एसईएस मॉडल एक एआरआईएएमए मॉडल है जिसमें एक नॉनसिजानल अंतर, एमए (1) शब्द, और कोई स्थिर शब्द नहीं है। अन्यथा एक कोटारिमा (0,1,1) मॉडल के रूप में लगातार क्वोट के बिना जाना जाता है एआरआईए मॉडल में एमए (1) गुणांक एसईएस मॉडल में मात्रा 1- 9 45 से मेल खाती है। उदाहरण के लिए, यदि आप एआरआईएमए (0,1,1) मॉडल को बिना सीरियल श्रृंखला के विश्लेषण के अनुसार फिट होते हैं, तो अनुमानित एमए (1) गुणांक 0.7029 हो जाता है, जो कि लगभग एक शून्य से 0.2 9 61 है। एसईएस मॉडल में गैर-शून्य निरंतर रेखीय प्रवृत्ति की धारणा को जोड़ना संभव है। ऐसा करने के लिए, एक नॉन-सीजनल फ़र्क और एक एमए (1) शब्द के साथ एक स्थिरांक के साथ एक एआरआईएएमए मॉडल निर्दिष्ट करें, अर्थात् स्थिरांक के साथ एक एआरआईएए (0,1,1) मॉडल दीर्घकालिक पूर्वानुमानों के बाद एक प्रवृत्ति होगी जो औसत अनुमान के मुताबिक औसत अनुमान के बराबर है। आप इसे मौसमी समायोजन के साथ संयोजन में नहीं कर सकते, क्योंकि मॉडल प्रकार को एआरआईएएम पर सेट किया जाता है जब मौसमी समायोजन विकल्प अक्षम हो जाते हैं हालांकि, आप पूर्वानुमान प्रक्रिया में मुद्रास्फीति समायोजन विकल्प का उपयोग करके एक साधारण घातीय चिकनाई मॉडल (बिना या बिना मौसमी समायोजन) में एक दीर्घकालिक दीर्घकालिक प्रवृत्ति को जोड़ सकते हैं। उचित प्रतिफल दर (प्रतिशत वृद्धि) दर प्रति अवधि का अनुमान प्राकृतिक रेखीय परिवर्तन के संयोजन के साथ डेटा के लिए लगाए गए रैखिक प्रवृत्ति मॉडल में ढलान गुणांक के रूप में किया जा सकता है, या यह दीर्घकालिक विकास संभावनाओं से संबंधित अन्य, स्वतंत्र जानकारी पर आधारित हो सकता है । (पृष्ठ के शीर्ष पर लौटें।) ब्राउन रैखिक (यानी दोहरी) घातीय चिकनाई एसएमए मॉडल और एसईएस मॉडल मानते हैं कि डेटा में किसी भी तरह का कोई प्रवृत्ति नहीं है (जो आम तौर पर ठीक है या कम से कम नहीं-बहुत बुरा 1- जब डेटा अपेक्षाकृत शोर होता है तो कदम-आगे पूर्वानुमान), और इन्हें ऊपर दिखाए गए अनुसार निरंतर रैखिक प्रवृत्ति को शामिल करने के लिए संशोधित किया जा सकता है। लघु अवधि के रुझानों के बारे में यदि कोई शृंखला विकास की एक अलग दर या एक चक्रीय पैटर्न को दिखाती है जो शोर के खिलाफ स्पष्ट रूप से खड़ा है, और अगर 1 से अधिक अवधि के पूर्वानुमान की आवश्यकता है, तो स्थानीय प्रवृत्ति का अनुमान भी हो सकता है एक मुद्दा। एक सरल घातीय चिकनाई मॉडल को एक रेखीय घातीय चिकनाई (एलईएस) मॉडल प्राप्त करने के लिए सामान्यीकृत किया जा सकता है जो कि दोनों स्तर और प्रवृत्ति के स्थानीय अनुमानों की गणना करता है सबसे सरल समय-भिन्न प्रवृत्ति मॉडल ब्राउन्स रैखिक घातीय चौरसाई मॉडल है, जो दो अलग-अलग चिकने श्रृंखला का उपयोग करता है जो समय के विभिन्न बिंदुओं पर केंद्रित होते हैं। पूर्वानुमान केंद्र दो केंद्रों के माध्यम से एक लाइन के एक्सट्रपलेशन पर आधारित है। (इस मॉडल के एक और अधिक परिष्कृत संस्करण, होल्ट 8217 के बारे में नीचे चर्चा की गई है।) ब्राउन 8217 के रेखीय घातीय चौरसाई मॉडल के बीजीय रूप, सरल घातीय चिकनाई मॉडल की तरह, कई अलग-अलग लेकिन समकक्ष रूपों में व्यक्त किया जा सकता है। इस मॉडल का quotstandardquot रूप आम तौर पर निम्नानुसार व्यक्त किया जाता है: चलो एस को श्रृंखला वाई को साधारण घातीय चिकनाई लगाने से प्राप्त एकल-सुगम श्रृंखला को दर्शाता है। यही है, अवधि टी पर एस का मूल्य दिया जाता है: (स्मरण करो, सरल के अनुसार घाटेदार चौरसाई, यह अवधि टी 1 पर वाई के लिए पूर्वानुमान होगा।) तब स्क्वाट को श्रृंखला में एसपी के लिए सरल घातीय चिकनाई (945 का उपयोग करके) से प्राप्त दोगुना-चिकनी श्रृंखला को निरूपित करना दें: अंत में, वाई टैक् के लिए पूर्वानुमान किसी भी किग्रा 1 के लिए, द्वारा दिया जाता है: यह पैदावार ई 0 0 (यानी, थोड़ा सा धोखा, और पहले पूर्वानुमान वास्तविक वास्तविकता के बराबर होने दें), और ई 2 वाई 2 8211 वाई 1 इसके बाद उपरोक्त समीकरण का उपयोग करके भविष्यवाणियां उत्पन्न होती हैं यह एस और एस पर आधारित फार्मूले के रूप में एक ही फिट मान पैदा करता है, यदि बाद में एस 1 एस 1 वाई 1 का इस्तेमाल किया गया था। मॉडल का यह संस्करण अगले पृष्ठ पर उपयोग किया जाता है जो मौसमी समायोजन के साथ घातीय चिकनाई के संयोजन का वर्णन करता है। होल्ट 8217 के रेखीय घातीय चिकनाई ब्राउन 8217 लेस मॉडल हाल के आंकड़ों को चौरसाई करके स्तर और प्रवृत्ति के स्थानीय अनुमानों की गणना करता है, लेकिन तथ्य यह है कि यह एक चिकनाई पैरामीटर के साथ ऐसा करता है डेटा पैटर्न पर एक बाधा रखता है जो इसे फिट करने में सक्षम है: स्तर और प्रवृत्ति स्वतंत्र दरों पर भिन्न होने की अनुमति नहीं है होल्ट 8217 एसईईएस मॉडल दो चिकनाई स्थिरांक, स्तर के लिए एक और प्रवृत्ति के लिए एक को शामिल करके इस मुद्दे को संबोधित करता है किसी भी समय, ब्राउन 8217 के मॉडल के रूप में, स्थानीय स्तर का एल टी अनुमान है और स्थानीय प्रवृत्ति का एक अनुमान टी टी है। यहां उनको यू के मूल्य से बार-बार गणना की जाती है, जो कि समय के समय में देखे गए थे और दो समीकरणों के स्तर और प्रवृत्ति के पिछले अनुमानों से भिन्न होते हैं, जो उन्हें अलग-अलग घातीय घुलनशीलता लागू करते हैं। यदि समय पर अनुमानित स्तर और प्रवृत्ति टी -1 है तो एल टी 820 9 1 और टी टी -1 क्रमशः, वाई tshy के लिए पूर्वानुमान जो कि समय पर किया गया होता टी -1 एल टी -1 टी टी -1 के बराबर होता है जब वास्तविक मूल्य मनाया जाता है, तो स्तर के अद्यतन अनुमान को 9 45 और 1- 9 45 के वजन का उपयोग करते हुए वाई टीसी और इसके पूर्वानुमान, एल टी -1 टी टी -1 के बीच में अंतर करके एक बार फिर गणना की जाती है। अनुमानित स्तर में परिवर्तन, अर्थात् एल टी 820 9 एल टी 820 9 1 समय पर प्रवृत्ति के एक शोर माप के रूप में व्याख्या की जा सकती है। इस प्रवृत्ति का अद्यतन अनुमान फिर एल टी 820 9 एल टी 820 9 1 और प्रवृत्ति के पिछले अनुमान टी टी -1 के बीच परस्पर अंतर करके फिर से गणना की जाती है। 946 और 1- 946 के वजन का प्रयोग करते हुए: 946 की प्रवृत्ति-चौरसाई निरंतर 945 की व्याख्या समरूपता स्तर 945 के समान होती है। 946 के छोटे मूल्य वाले मॉडल मानते हैं कि प्रवृत्ति समय के साथ बहुत धीरे-धीरे बदलती है, जबकि मॉडल बड़ा 946 यह मानते हैं कि यह अधिक तेजी से बदल रहा है। एक बड़ा 946 के साथ एक मॉडल का मानना ​​है कि दूर के भविष्य में बहुत अनिश्चितता है, क्योंकि प्रवृत्ति अनुमानों में त्रुटियों को एक समय से अधिक अवधि की भविष्यवाणी करते समय काफी महत्वपूर्ण हो जाता है। (पृष्ठ के शीर्ष पर लौटें।) 1-कदम-आगे पूर्वानुमानों की औसत स्क्वायर त्रुटि को कम करके, चिकनाई स्थिरांक 945 और 946 का अनुमान सामान्य तरीके से किया जा सकता है जब यह Statgraphics में किया जाता है, अनुमान 945 0.3048 और 946 0.008 हो सकता है। 9 46 का बहुत ही कम मूल्य यह है कि मॉडल में एक अवधि से लेकर दूसरे तक के रुझान में बहुत कम बदलाव होता है, इसलिए मूल रूप से यह मॉडल लंबी अवधि के रुझान का अनुमान लगाने का प्रयास कर रहा है। सीरीज़ के स्थानीय स्तर के आकलन में उपयोग किए जाने वाले डेटा की औसत आयु की धारणा के अनुरूप, स्थानीय प्रवृत्ति का आकलन करने के लिए उपयोग की जाने वाली डेटा की औसत आयु 1 9 46 के अनुपात में है, हालांकि यह बिल्कुल समान नहीं है । इस मामले में यह 10.006 125 हो गया है। यह एक बहुत ही सटीक संख्या है, क्योंकि 946 के अनुमानित संख्या की वास्तविकता 3 दशमलव स्थान है, लेकिन यह 100 के नमूने के आकार के समान परिमाण के समान सामान्य क्रम का है, इसलिए इस मॉडल की प्रवृत्ति का अनुमान लगाने में बहुत अधिक इतिहास का औसत है। नीचे दिए गए पूर्वानुमान की साजिश से पता चलता है कि लेस मॉडल श्रृंखला के अंत में एक थोड़ा बड़ा स्थानीय रुझान का अनुमान लगाता है जो एसईएसट्रेंड मॉडल में अनुमानित निरंतर प्रवृत्ति से है। इसके अलावा, 945 का अनुमानित मूल्य एसईएस मॉडल को प्रवृत्ति के साथ या बिना फिट करने से प्राप्त लगभग समान है, इसलिए यह लगभग समान मॉडल है अब, ये एक मॉडल के लिए उचित पूर्वानुमान की तरह दिखते हैं जो स्थानीय प्रवृत्ति का अनुमान लगा रहा है यदि आप 8220eyeball8221 इस भूखंड को देख रहे हैं, ऐसा लगता है जैसे कि श्रृंखला के अंत में स्थानीय प्रवृत्ति नीचे घट गई है इस मॉडल के मापदंडों 1-कदम-आगे पूर्वानुमान के स्क्वेर एरर को कम करके अनुमान लगाया गया है, न कि लंबी अवधि के पूर्वानुमान, इस मामले में प्रवृत्ति doesn8217t बहुत अंतर बनाते हैं। यदि आप सभी को देख रहे हैं, तो 1-कदम-आगे त्रुटियां हैं, तो आप 10 या 20 अवधि के दौरान (कहना) रुझानों की बड़ी तस्वीर नहीं देख रहे हैं। डेटा के आंखों के एक्सट्रपलेशन के साथ इस मॉडल को और अधिक प्राप्त करने के लिए, हम प्रवृत्ति-चौरसाई स्थिरता को मैन्युअल रूप से समायोजित कर सकते हैं ताकि यह प्रवृत्ति अनुमान के लिए एक कम आधार रेखा का उपयोग कर सके। उदाहरण के लिए, यदि हम 946 0.1 सेट करना चुनते हैं, तो स्थानीय प्रवृत्ति का आकलन करने में उपयोग की जाने वाली डेटा की औसत आयु 10 अवधि है, जिसका मतलब है कि हम उस पिछले 20 अवधि या उससे अधिक की प्रवृत्ति का औसत रहे हैं यहां 8217 का अनुमान लगाया गया प्लॉट क्या दिखता है अगर हम 9 45 0.1 सेट करते हुए 9 45 0.3 रखे यह इस श्रृंखला के लिए सहज रूप से उचित लगता है, हालांकि भविष्य में इस प्रवृत्ति को 10 से अधिक अवधि के विस्तार के लिए संभवतः खतरनाक है। त्रुटि आंकड़ों के बारे में क्या यह ऊपर दिखाए गए दो मॉडल के साथ-साथ तीन एसईएस मॉडल की तुलना में एक मॉडल तुलना है। 945 का इष्टतम मूल्य। एसईएस मॉडल के लिए लगभग 0.3 है, लेकिन इसी तरह के परिणाम (क्रमशः थोड़ा अधिक या कम प्रतिक्रिया के साथ) 0.5 और 0.2 के साथ प्राप्त होते हैं। (ए) होल्ट्स रैखिक विस्तार अल्फा 0.3048 और बीटा के साथ चौरसाई 0.008 (बी) होल्ट रैखिक एक्सपी अल्फा 0.3 और बीटा 0.1 (सी) के साथ चौरसाई अल्फा 0.5 (डी) के साथ सरल घातीय चौरसाई अल्फा 0.3 (ई) के साथ सरल घातीय चौरसाई अल्फा 0.2 के साथ आसान घातीय चिकनाई 0.2 उनके आँकड़े लगभग समान हैं, इसलिए हम वास्तव में आधार पर चुनाव कर सकते हैं 8217t डेटा नमूने के भीतर 1-कदम-आगे पूर्वानुमान त्रुटियों का हमें अन्य विचारों पर वापस आना होगा। अगर हम दृढ़ता से मानते हैं कि पिछले 20 दिनों में क्या हुआ है, तो मौजूदा प्रवृत्ति अनुमान के आधार पर यह समझ में आता है, हम एलईएस मॉडल के लिए 945 0.3 और 946 0.1 के साथ मामला बना सकते हैं। अगर हम अज्ञात होना चाहते हैं कि क्या स्थानीय प्रवृत्ति है, तो एसईएस मॉडल में से एक को समझना आसान हो सकता है और अगले 5 या 10 अवधि के लिए अधिक मध्य-ऑफ-रोड पूर्वानुमान भी देगा। (पृष्ठ के शीर्ष पर लौटें।) किस प्रकार का रुझान-एक्सट्रपलेशन सर्वश्रेष्ठ है: क्षैतिज या रैखिक अनुभवजन्य प्रमाण बताते हैं कि अगर मुद्रास्फीति के लिए डेटा पहले से समायोजित किया गया है (यदि आवश्यक हो), तो यह अल्पकालिक रेखीय एक्सट्रपोल करने के लिए अविवेकपूर्ण हो सकता है भविष्य में बहुत दूर रुझान आज के रुझान स्पष्ट हो सकते हैं कि भविष्य में उत्पाद अप्रचलन, बढ़ी हुई प्रतिस्पर्धा और उद्योग में चक्रीय गिरावट या उतार-चढ़ाव जैसे विभिन्न कारणों के कारण भविष्य में धीमा हो सकता है। इस कारण से, सरल व्याख्यात्मक चौरसाई अक्सर अपेक्षाकृत अधिक अपेक्षाकृत बेहतर प्रदर्शन करती है, इसके बावजूद क्षैतिज क्षैतिज प्रवृत्ति एक्सट्रपलेशन। रेखीय घातीय चिकनाई मॉडल के ढेलेदार प्रवृत्ति संशोधनों का उपयोग अक्सर अपने प्रवृत्ति के अनुमानों में रूढ़िवाद के एक नोट को पेश करने के लिए किया जाता है। डीएमपीड-ट्रेंड एलईएस मॉडल को विशेष रूप से एक एआरआईएएएमए मॉडल के एक विशेष मामले के रूप में लागू किया जा सकता है, एक एआरआईएमए (1,1,2) मॉडल। एआरआईएए मॉडल के विशेष मामलों के रूप में उन पर विचार करते हुए घातीय चिकनाई मॉडल द्वारा निर्मित दीर्घकालिक पूर्वानुमान के आसपास विश्वास अंतराल की गणना करना संभव है (सावधान: सभी मॉडल इन मॉडल के लिए सही तरीके से आत्मविश्वास की गणना नहीं करते हैं।) विश्वास के अंतराल की चौड़ाई (i) मॉडल की आरएमएस त्रुटि, (ii) चौरसाई के प्रकार (सरल या रैखिक) (iii) मूल्य पर निर्भर करता है (एस) चौरसाई निरंतर (एस) और (iv) आगे की अवधि की संख्या आप भविष्यवाणी कर रहे हैं सामान्य तौर पर, अंतराल तेजी से फैल जाते हैं क्योंकि एसईएस मॉडल में 9 45 अधिक हो जाता है और यह बहुत तेजी से फैल जाता है जब सरल चौरसाई के बजाय रैखिक इस्तेमाल होता है। नोट्स के एआरआईएए मॉडल खंड में इस विषय पर आगे चर्चा की गई है। (पृष्ठ के शीर्ष पर लौटें।) स्टाटा में, मैं मौजूदा डेटा के आधार पर एक नया चर कैसे बनाऊँगा। GEN (कम करने के लिए कम) और egen कमांड का उपयोग करते हुए स्टेटा में नए चर बनाने का उदाहरण निम्नलिखित हैं: एक नया वैरिएबल बनाने के लिए (जैसे न्यूवर्स) और अपने मूल्य को 0 पर सेट करें। उपयोग: मौजूदा चर (जैसे v1। v2। v3। और v4) की राशि के परिवर्तन से एक नया चर (जैसे कुल) बनाने के लिए, उपयोग करें: वैकल्पिक रूप से, egen का उपयोग करें अंतर्निहित पंक्तिपटल विकल्प: egen कमांड 0 के रूप में लापता मूल्यों का व्यवहार करता है। चार चर (जैसे v1। v2। v3। और v4) का उपयोग करने वाले एक चर (जैसे औसत) बनाने के लिए उपयोग करें: (स्लैश) का उपयोग करें गुणा करने के लिए विभाजन और एक (तारांकन) निरूपित करने के लिए वैकल्पिक रूप से, अंतर्निहित पंक्ति में विकल्प के साथ ईजन का उपयोग करें: स्टाटा आपको परिवर्तनीय परिवर्तनों के लिए अंतर्निहित फ़ंक्शन का लाभ भी देता है। उदाहरण के लिए, v1 के प्राकृतिक लॉग को लेने के लिए और एक नया चर (उदा। V1log) बनाने के लिए, उपयोग करें: अतिरिक्त सहायता के लिए, Stata के भीतर मदद फ़ाइलों को देखें (निम्न में से प्रत्येक विषय के लिए, संबंधित मदद कमांड दर्ज करें):

No comments:

Post a Comment